Research Article Statistical Convergence of Double Sequences on Probabilistic Normed Spaces
نویسندگان
چکیده
The concept of statistical convergence was presented by Steinhaus in 1951. This concept was extended to the double sequences by Mursaleen and Edely in 2003. Karakus has recently introduced the concept of statistical convergence of ordinary (single) sequence on probabilistic normed spaces. In this paper, we define statistical analogues of convergence and Cauchy for double sequences on probabilistic normed spaces. Then we display an example such that our method of convergence is stronger than usual convergence on probabilistic normed spaces. Also we give a useful characterization for statistically convergent double sequences.
منابع مشابه
Statistical uniform convergence in $2$-normed spaces
The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover, we define the conce...
متن کاملStatistical Convergence of Double Sequences on Probabilistic Normed Spaces
The concept of statistical convergence was presented by Steinhaus in 1951. This concept was extended to the double sequences by Mursaleen and Edely in 2003. Karakus has recently introduced the concept of statistical convergence of ordinary (single) sequence on probabilistic normed spaces. In this paper, we define statistical analogues of convergence and Cauchy for double sequences on probabilis...
متن کاملStatistical Convergence of Double Sequences in 2-Normed Spaces
In this article we define and investigate statistical analogue of convergence and Cauchy for double sequences in 2-normed space.We also obtain a criteria for a double sequence in 2-normed spaces to be a statistical Cauchy sequence. Mathematics Subject Classification: 40A05; 40A99, 46A70, 46A45
متن کاملStatistical convergence on probalistic normed spaces
In this paper we define concepts of statistical convergence and statistical Cauchy on probabilistic normed spaces. Then we give a useful characterization for statistically convergent sequences. Furthermore, we display an example such that our method of convergence is stronger than the usual convergence on probabilistic normed spaces. We also introduce statistical limit points, statistical clust...
متن کاملOn Ideal Convergence of Double Sequences in Probabilistic Normed Spaces
One of the generalizations of statistical convergence is I-convergence which was introduced by Kostyrko et al. [12]. In this paper, we define and study the concept of I-convergence, I∗-convergence, I-limit points and I-cluster points of double sequences in probabilistic normed space. We discuss the relationship between I2-convergence and I ∗ 2 -convergence, i.e., we show that I ∗ 2 -convergence...
متن کامل